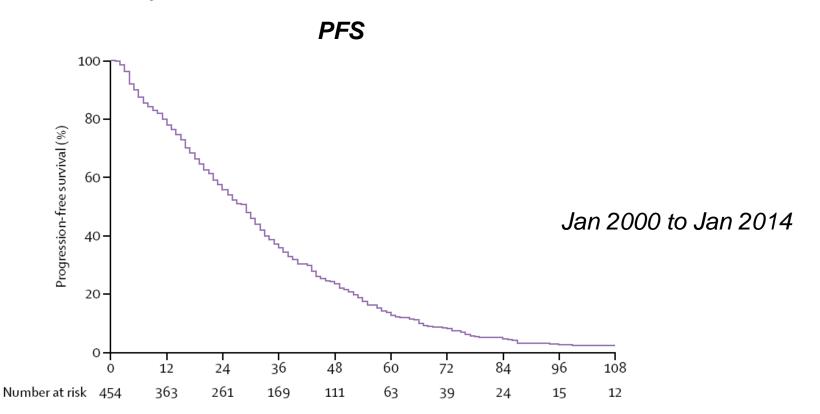
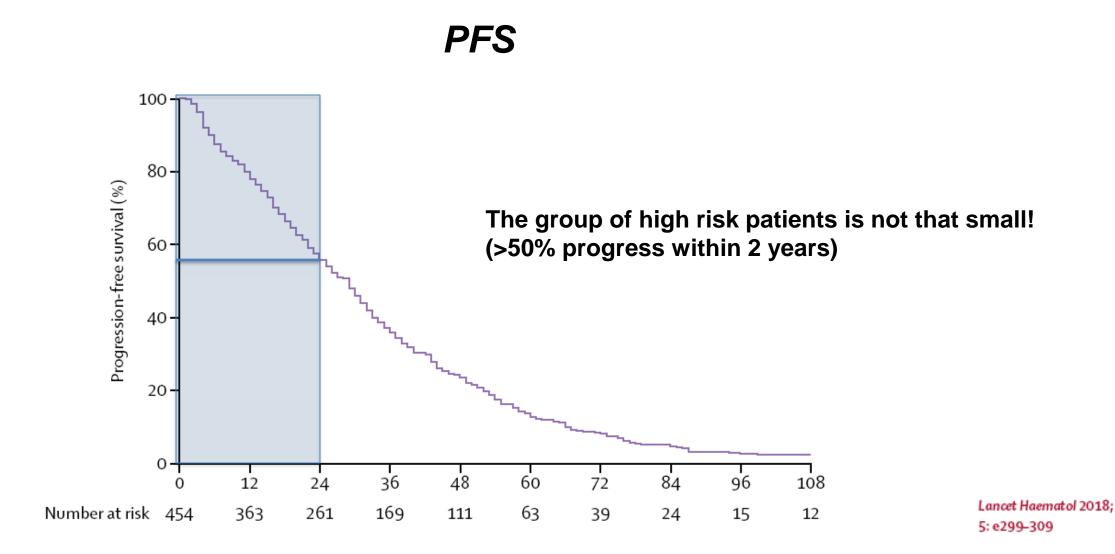
Turin, Sept 13-14, 2018

How I treat high risk Waldenström's Macroglobulinemia?

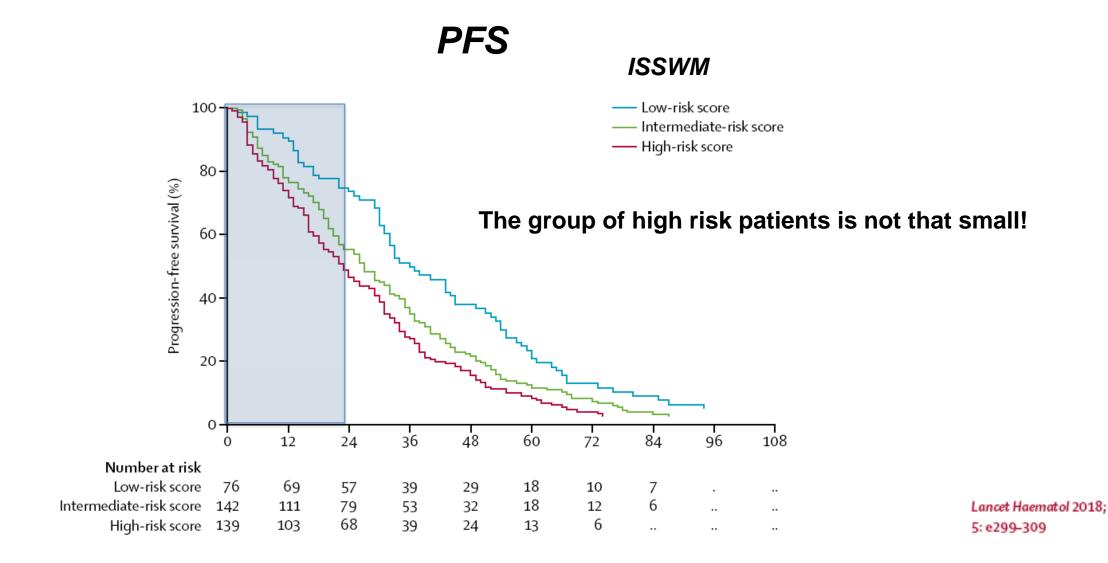
Christian Buske


The first difficulty!

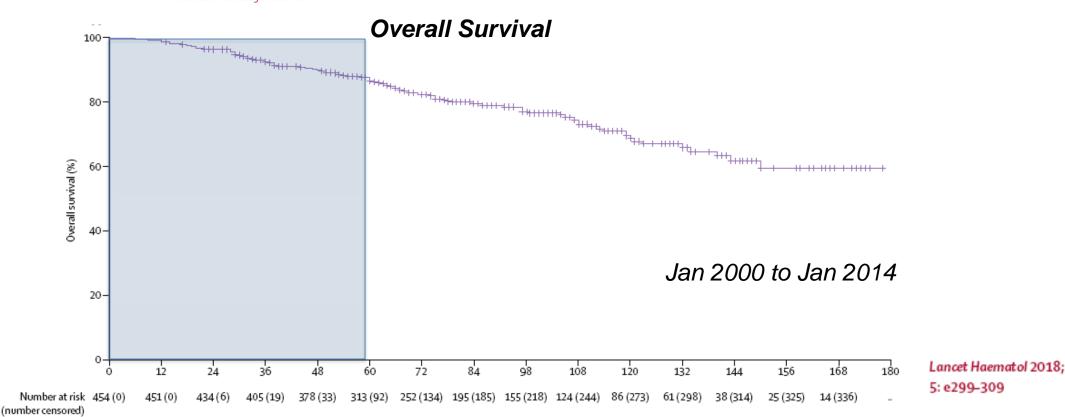
How to define high risk patients in WM!


What do we know......, WM is clinically a heterogenous disease

Treatment and outcome patterns in European patients with Waldenström's macroglobulinaemia: a large, observational, retrospective chart review

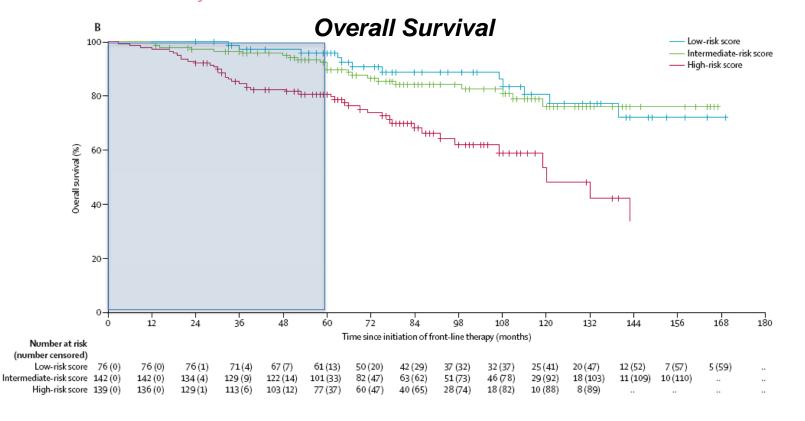

Christian Buske, Shalal Sadullah, Efstathios Kastritis, Alessandra Tedeschi, Ramón García-Sanz, Lukasz Bolkun, Xavier Leleu, Wolfgang Willenbacher, Roman Hájek, Monique C Minnema, Mei Cheng, Elizabeth Bilotti, Thorsten Graef, Meletios A Dimopoulos, on behalf of the European Consortium for Waldenström's Macroglobulinemia

What do we know....... WM is clinically a heterogenous disease


What do we know......, WM is clinically a heterogenous disease

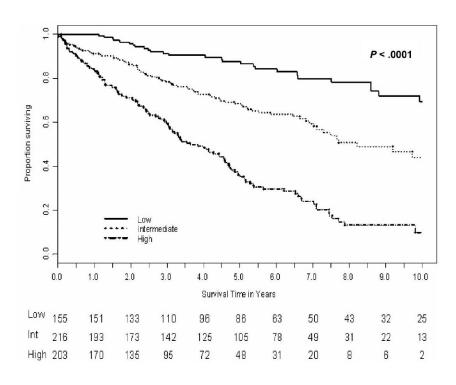
What do we know.......... WM is clinically a heterogenous disease

Treatment and outcome patterns in European patients with Waldenström's macroglobulinaemia: a large, observational, retrospective chart review


Christian Buske, Shalal Sadullah, Efstathios Kastritis, Alessandra Tedeschi, Ramón García-Sanz, Lukasz Bolkun, Xavier Leleu, Wolfgang Willenbacher, Roman Hájek, Monique C Minnema, Mei Cheng, Elizabeth Bilotti, Thorsten Graef, Meletios A Dimopoulos, on behalf of the European Consortium for Waldenström's Macroglobulinemia

What do we know......, WM is clinically a heterogenous disease

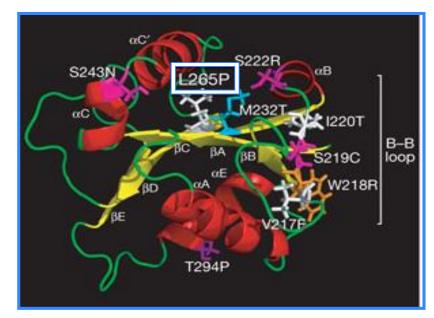
Treatment and outcome patterns in European patients with Waldenström's macroglobulinaemia: a large, observational, retrospective chart review


Christian Buske, Shalal Sadullah, Efstathios Kastritis, Alessandra Tedeschi, Ramón García-Sanz, Lukasz Bolkun, Xavier Leleu, Wolfgang Willenbacher, Roman Hájek, Monique C Minnema, Mei Cheng, Elizabeth Bilotti, Thorsten Graef, Meletios A Dimopoulos, on behalf of the European Consortium for Waldenström's Macroglobulinemia

Do we adapt treatment according to the ISSWM?

NO!

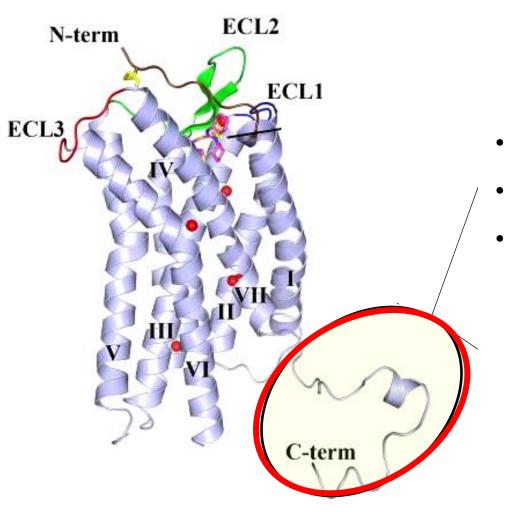
	Risk Score WM				
	Low			Intermediate	High
Score	0-1 (except age)		t age)	Age or 2	≥ 3
Survival	87 %	, D		68 %	36%
<u>Factors</u>					
Age > 65 yrs				+	+
Hb ≤ 11.5 g/dl)			
Thrombos < 100 x 10 ⁹ /I			Every	factor counts	as 1
$b_2M > 3 \text{ mg/l}$			-		
IgM > 70g/I					



We need well defined predictive markers!

MYD88 Mutation

Treon et al


- Whole Genome Seq. of 30 WM patients, validated by Sanger Seq.
- Sanger Seq. identified MYD88 _{L265P} in 90% of patients (27/30 WM samples)
- 22/26 patients were heterozygous for MYD88 L265P
- 9/9 patients with familial WM carried mutant MYD88 L265P
- 2/21 patients with IgM-MGUS had MYD88 L265P expression

3-D structure of MY88 TIR domain

Base pair mismatch Leuc → Pro at position 265 in MYD88 coding region

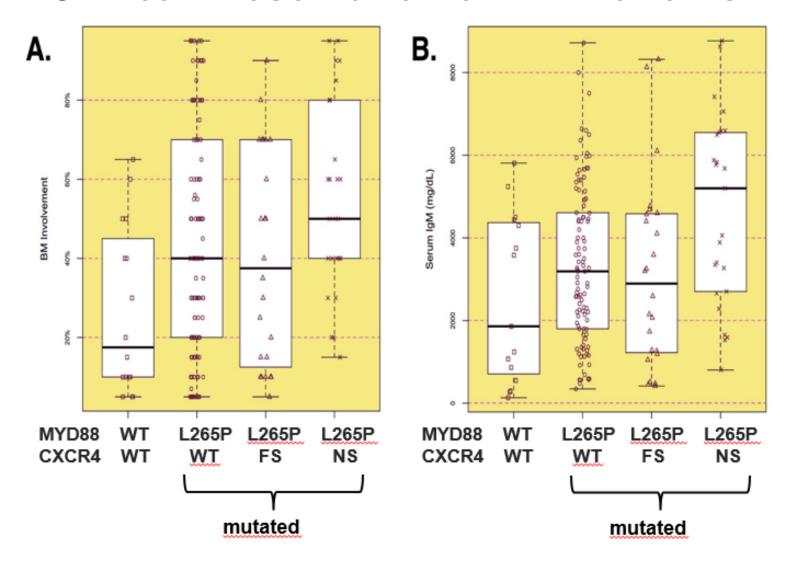
WHIM-like CXCR4 C-tail mutations in WM Warts, Hypogammaglobulinemia, Infection, and Myelokathexis

- 30-40% of WM patients
 - > 30 Nonsense and Frameshift Mutations
- Almost always occur with MYD88^{L265P}

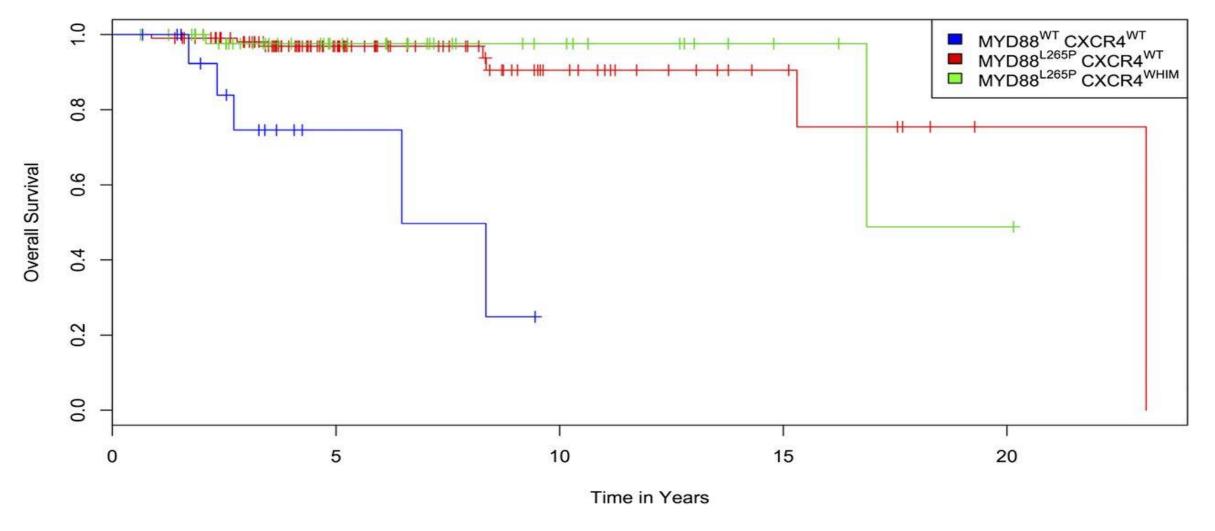
Waldenström's Macroglobulinemia: WM is a heterogenous disease!

Molecular Markers

Any Implications?


Waldenström's Macroglobulinemia: WM is a heterogenous disease!

Molecular Markers


Three groups

MYD88/ CXCR4	OR	VGPR/PR
+/WT		
+/+		
WT/WT		

MYD88 and CXCR4 Mutation Status Impacts Clinical Presentation of WM Patients

Kaplan-Meier plot for overall survival of 175 WM patients from time of diagnosis stratified by MYD88 and CXCR4 mutation status

Waldenström's Macroglobulinemia

What about treatment?

Treatment of WM

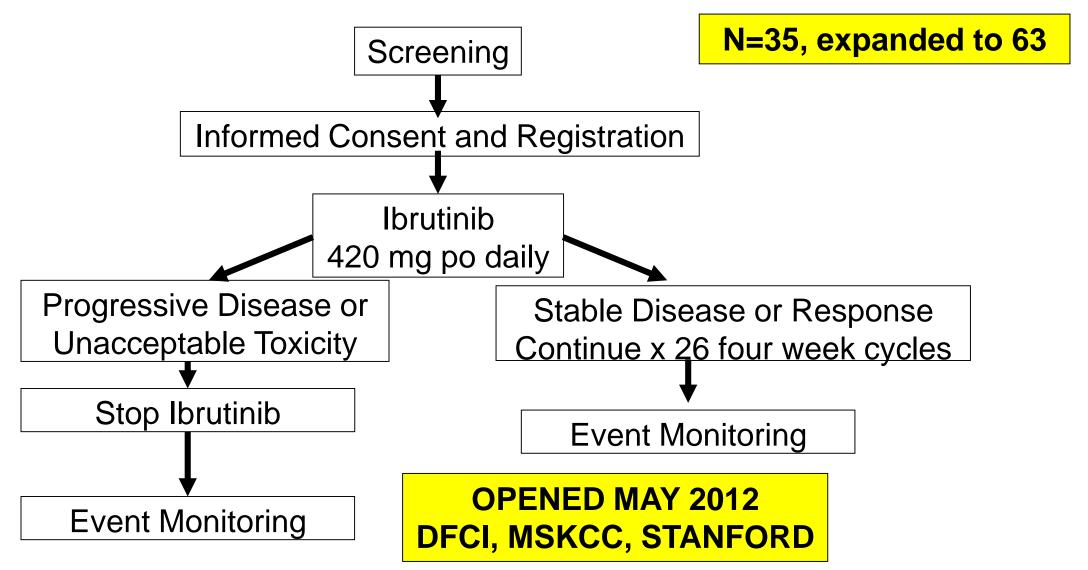
Rituximab/Chemotherapy still a good treatmemt for many patients

but Ibrutinib an important treatment option!

Ibrutinib sets the standard!

Waldenström's Macroglobulinemia

What about Ibrutinib?

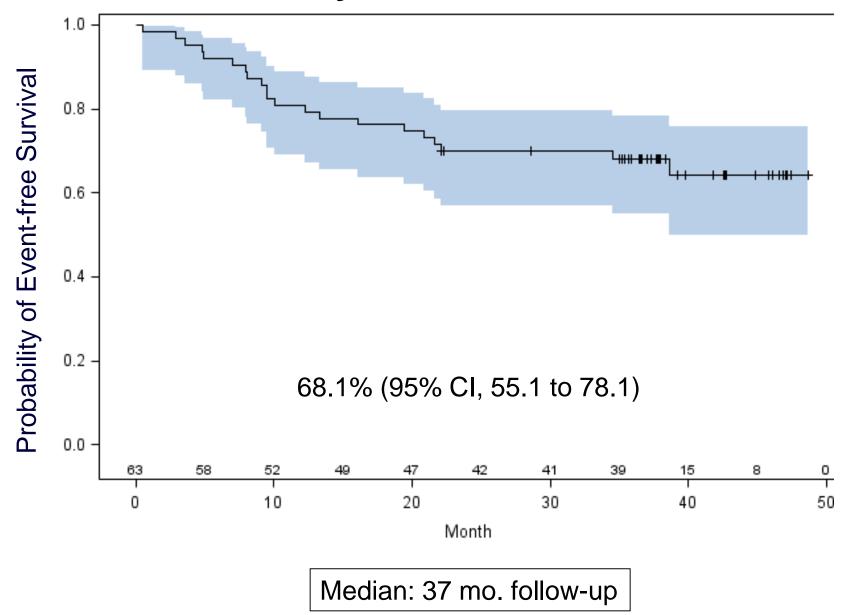

What can we achieve (and what not) with Ibrutinib?

ORIGINAL ARTICLE

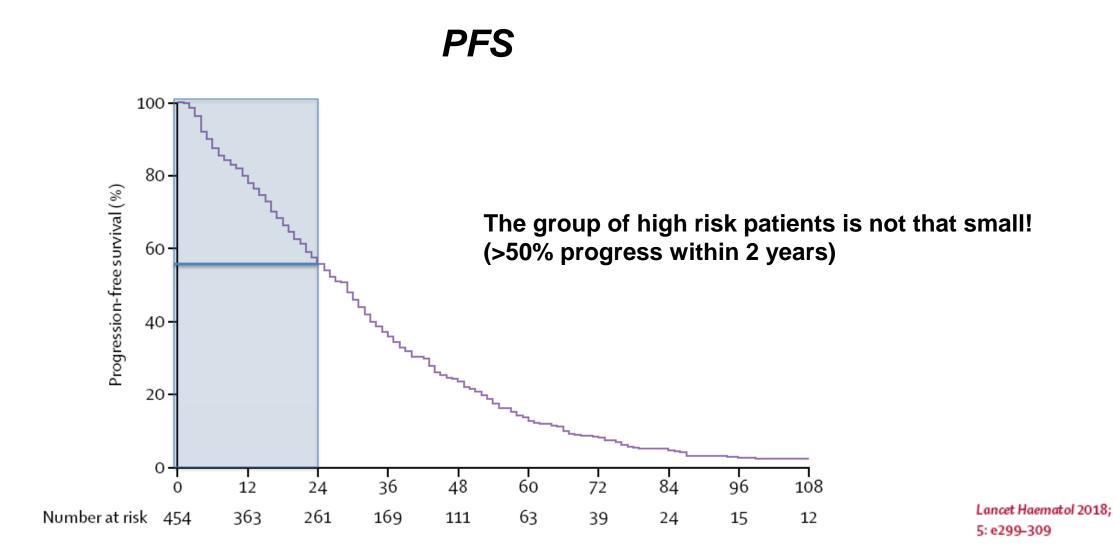
Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D, Christina K. Tripsas, M.A., Kirsten Meid, M.P.H., Diane Warren, B.S., Gaurav Varma, M.S.P.H., Rebecca Green, B.S., Kimon V. Argyropoulos, M.D., Guang Yang, Ph.D., Yang Cao, M.D., Lian Xu, M.S., Christopher J. Patterson, M.S., Scott Rodig, M.D., Ph.D., James L. Zehnder, M.D., Jon C. Aster, M.D., Ph.D., Nancy Lee Harris, M.D., Sandra Kanan, M.S., Irene Ghobrial, M.D., Jorge J. Castillo, M.D., Jacob P. Laubach, M.D., Zachary R. Hunter, Ph.D., Zeena Salman, B.A., Jianling Li, M.S., Mei Cheng, Ph.D., Fong Clow, Sc.D., Thorsten Graef, M.D., M. Lia Palomba, M.D., and Ranjana H. Advani, M.D.

Schema for Multicenter Phase II Study of Ibrutinib in Relapsed/Refractory WM


Clinical responses to ibrutinib: Median of 9 (range 1-18) Cycles

	(N= 63)	(%)
VGPR	10	15.9
PR	36	57
MR	11	17.5


Response criteria adapted from 3rd International Workshop on WM (Treon et al, BJH 2011)

ORR: 90.5% Major RR (≥ PR): 73%

Ibrutinib in Previously Treated WM: Event-free Survival

What do we know....... WM is clinically a heterogenous disease

The first difficulty!

How to define high risk patients in WM!

Is there at all a high risk group in the era of ibrutinib?

Treatment of WM

High risk patients = Rituximab refractory patients?

In the ibrutinib era?

PCYC-1127 (iNNOVATE™): Study design

Key eligibility criteria

- Confirmed WM (N=~150)
- Measurable disease (serum IgM > 0.5 g/dL)
- ECOG PS status of 0–2

RANDOMIZE

1:1

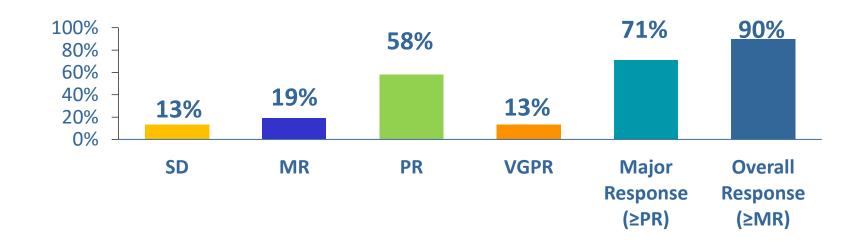
Arm A

ibrutinib + rituximab
Oral ibrutinib 420 mg once daily PO until PD

rituximab 375 mg/m² IV on day 1 of weeks 1-4 and weeks 17-20

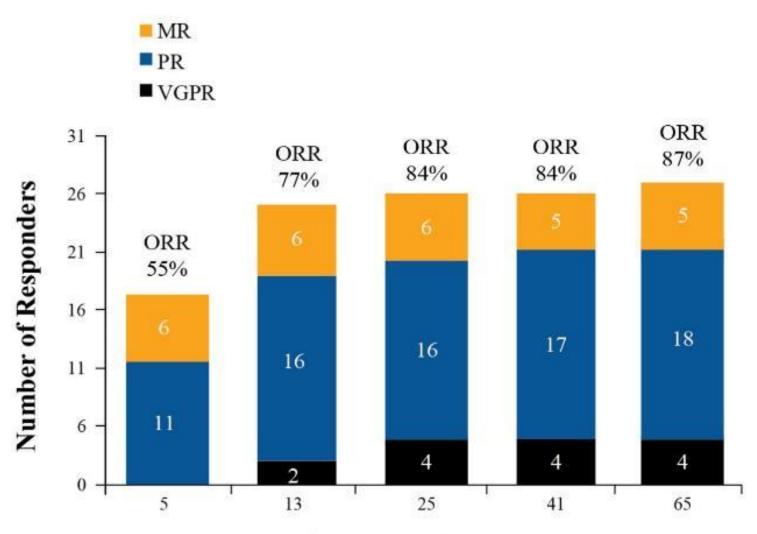
Arm B*

placebo + rituximab 3 matching placebo capsules until PD


rituximab 375 mg/m2 IV on day 1 of weeks 1-4 and weeks 17-20

*crossover to ibrutinib for patients treated with placebo confirmed disease progression (by IRC) and disease requiring treatment.

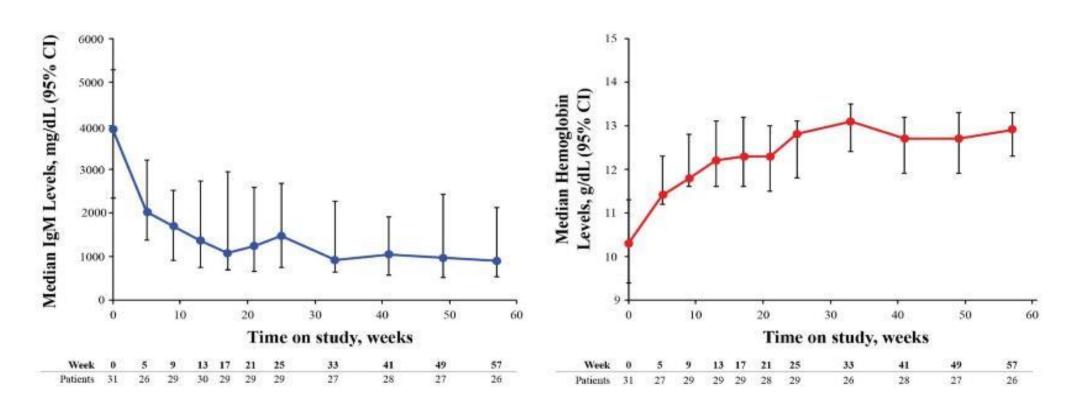
- If refractory to last rituximab-containing regimen defined as
- Relapse after <12 months of treatment OR
- Failure to achieve at least a MR


Arm C (Open-label substudy; N=31)†
Not eligible for randomization
ibrutinib 420 mg once daily PO until PD

Response to single agent ibrutinib

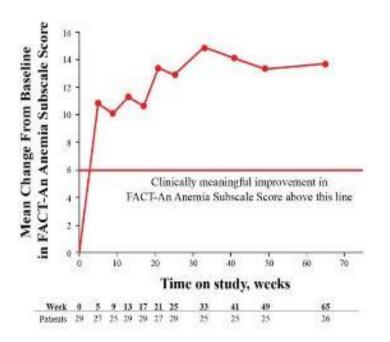
Best Response	AII (N=31)
VGPR	4
PR	18
MR	6
ORR, n (%)	28 (90)
MRR, n (%)	22 (71)

Response to single agent ibrutinib over time

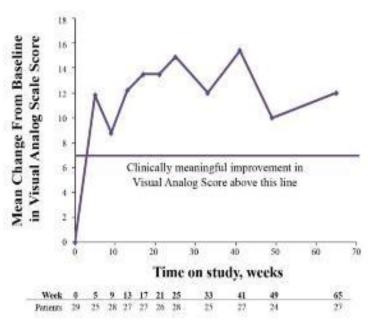


Time on study, weeks

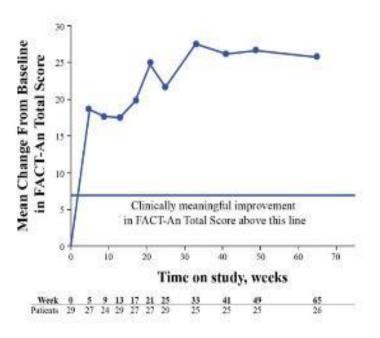
Response to single agent ibrutinib: IgM levels and hemoglobin response


Median IgM levels over time

Median hemoglobin levels over time



Improvements in patient-reported outcome measurements during follow-up


FACT-An-Anemia Subscale Score

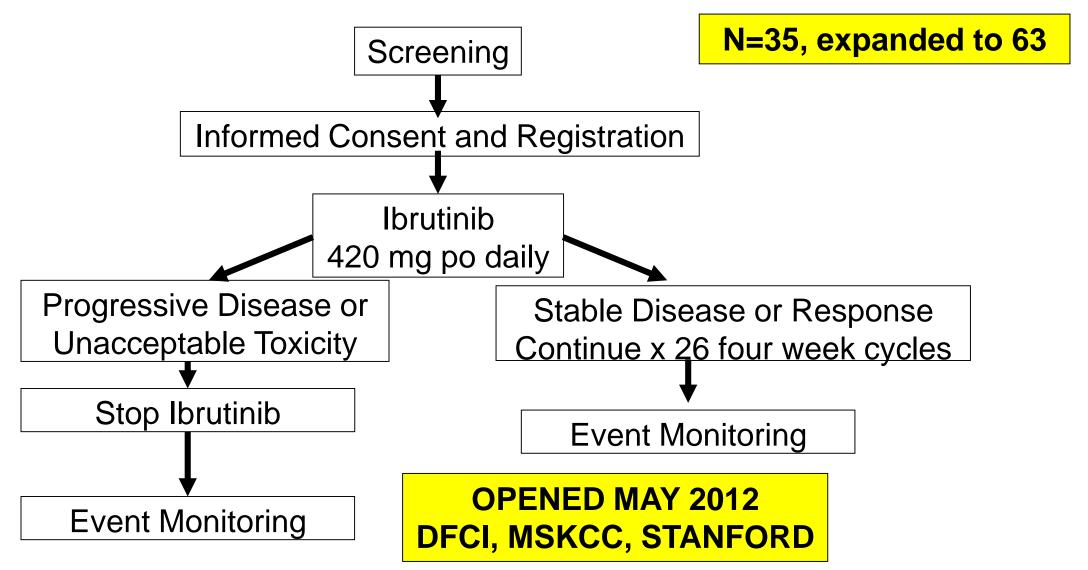
Visual Analog Score of the EQ-5D-5L questionnaire

FACT-An total score

Treatment of WM

High risk patients defined by the genotype?

In the ibrutinib era?

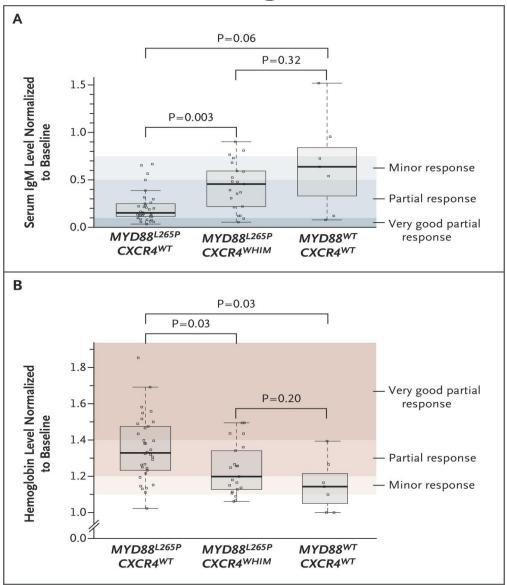

Waldenström's Macroglobulinemia: WM is a heterogenous disease!

Molecular Markers

Three groups

MYD88/ CXCR4	OR	VGPR/PR
+/WT		
+/+		
WT/WT		

Schema for Multicenter Phase II Study of Ibrutinib in Relapsed/Refractory WM


Responses to ibrutinib are impacted by MYD88 (L265P and non-L265P) and CXCR4 mutations

	MYD88 ^{MUT} CXCR4 ^{WT}	MYD88 ^{MUT} CXCR4 ^{WHIM}	MYD88 ^{WT} CXCR4 ^{WT}	p-value
N=	36	21	5	
Overall RR	100%	85.7%	60%	<0.01
Major RR	91.7%	61.9%	0%	<0.01

2 patients subsequently found to have other MYD88 mutations not picked up by AS-PCR

Median time on ibrutinib 19.1 months

Effect of MYD88 and CXCR4 mutation status on ibrutinib-related changes in serum IgM and hemoglobin levels

Median time on ibrutinib 19.1 months

Long-Term Follow-up of Previously Treated Patients Who Received Ibrutinib for Symptomatic Waldenström's Macroglobulinemia: Update of Pivotal Clinical Trial

Steven P. Treon, Kirsten Meid, Joshua Gustine, Kurt S. Bantilan, Toni Dubeau, Patricia Severns, Guang Yang, Lian Xu, Christopher Patterson, Irene M. Ghobrial, Jacob Laubach, Zachary R. Hunter, Jorge J. Castillo, Maria L. Palomba, and Ranjana H. Advani. Dana-Farber Cancer Institute, Boston, MA; Stanford Medical Center, Palo Alto, CA; Memorial Sloan Kettering, New York, NY.

Long-term follow-up of previously treated patients who received ibrutinib for symptomatic WM: Update of pivotal clinical trial

The impact of MYD88 and CXCR4 mutation status on responses and time to at least minor (overall) and PR or better (major) responses

	All patients (n=63)	MYD88 ^{MUT} CXCR4 ^{WT} (n=36)	MYD88 ^{MUT} CXCR4 ^{MUT} (n=21)	MYD88 ^{WT} CXCR4 ^{WT} (n=5)	P-Value
Overall Responses (%)	90.4	100	85.7	60	0.0038
Major Responses (%)	77.7	97.2	66.6	0	<0.001
VGPR (%)	27	41.6	9.5	0	0.0114
Median Time to Minor Response or better (months)	1.0 (range 1.0-22.5)	1.0 (range 1.0-15)	1.0 (range 1.0-22.5)	1.0 (range 1.0-18)	0.1
Median Time to Major Response (months)	2.0 (range 1.0-49)	2.0 (range 1.0-49)	6.0 (range 1.0-40)	N/a	0.05

Median time on ibrutinib 46 months (0.5 - 60)

Waldenström's Macroglobulinemia

What about Ibrutinib?

What can we achieve (and what not) with Ibrutinib?

Ibrutinib as the most efficient single chemofree agent in WM -

BUT GENOTYPE DEPENDING CLINICAL ACTIVITY

We need well defined predictive markers!

The genotype paves the way......

CXCR4 mutated and MYD88^{WT}/CXCR4^{WT} patients are ,,high risk" patients in the era of ibrutinib

CXCR4 mutated and MYD88^{WT}/CXCR4^{WT} patients are "high risk" patients in the era of ibrutinib

Approaches to improve on this!

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström's Macroglobulinemia

M.A. Dimopoulos, A. Tedeschi, J. Trotman, R. García-Sanz, D. Macdonald, V. Leblond, B. Mahe, C. Herbaux, C. Tam, L. Orsucci, M.L. Palomba, J.V. Matous, C. Shustik, E. Kastritis, S.P. Treon, J. Li, Z. Salman, T. Graef, and C. Buske, for the iNNOVATE Study Group and the European Consortium

for Waldenström's Macroglobulinemia*

This article was published on June 1, 2018, at NEJM.org.

iNNOVATE (PCYC-1127) Study Design

Key eligibility criteria

- Confirmed WM* (N≈150)
- Measurable disease (serum IgM >0.5 g/dL)
- RTX sensitive
 - Not refractory to last prior
 RTX-based therapy
 - Had not received RTX<12 months before first study dose

1:1 Randomization

Stratification

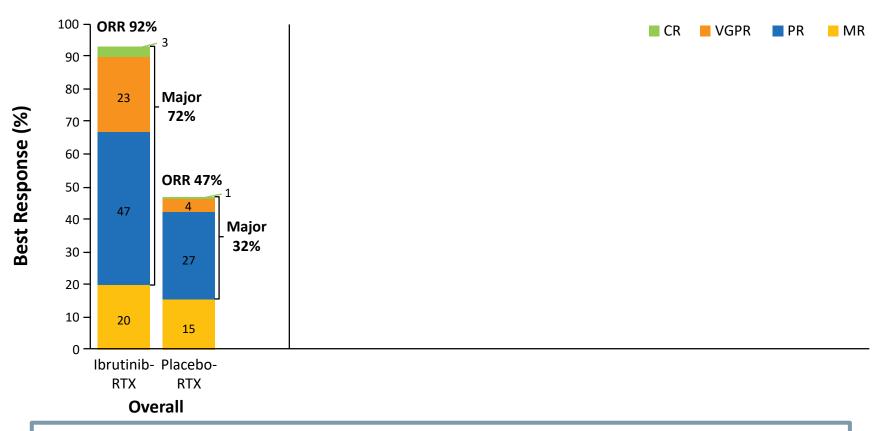
- IPSSWM (low vs intermediate vs high)
- Number of prior regimens (0 vs 1–2 vs ≥3)
- ECOG status (0–1 vs 2)

Arm A ibrutinib-RTX

Oral ibrutinib 420 mg once daily until PD RTX 375 mg/m² IV on day 1 of weeks 1–4 and 17–20

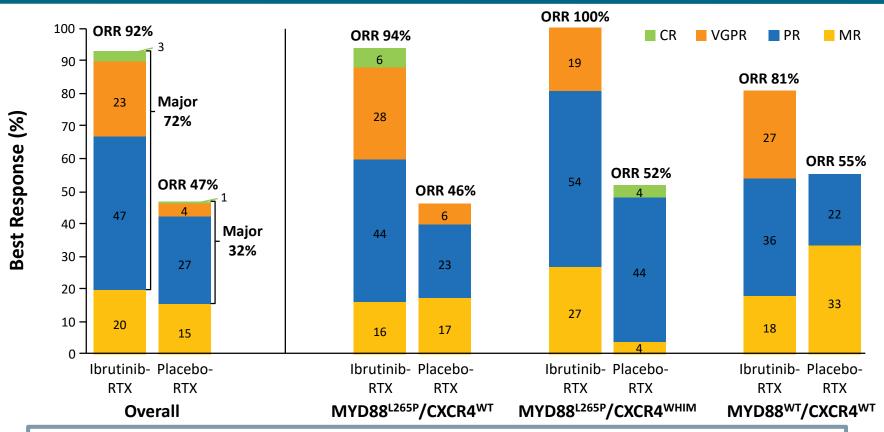
Arm B placebo-RTX

3 matching placebo capsules until PD RTX 375 mg/m² IV on day 1 of weeks 1–4 and 17–20


- Primary Endpoint: PFS by IRC
- Secondary Endpoints: Response rate, TTnT, sustained hematologic improvement, PROs, OS, safety

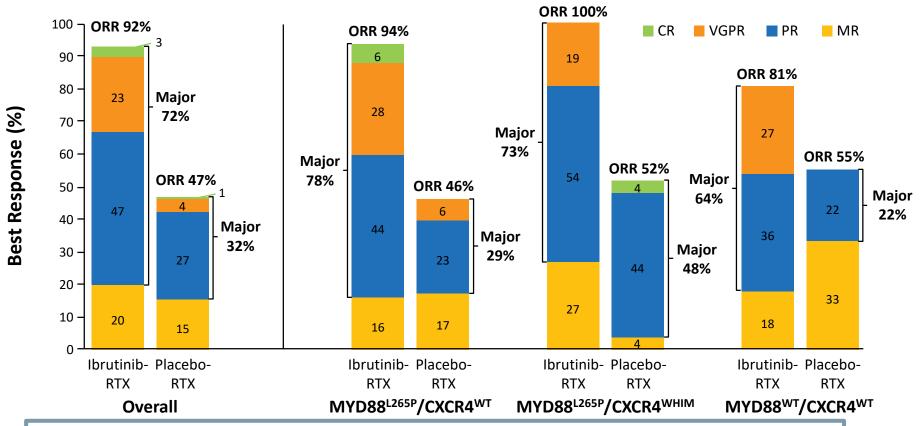
Demographics and Clinical Characteristics Were Balanced at Baseline

Characteristic at Randomization	Ibrutinib-RTX (n = 75)	Placebo-RTX (n = 75)
Median age, years (range)	70 (36–89)	68 (39–85)
Age ≥75 years, n (%)	30 (40)	20 (27)
Male sex, n (%)	45 (60)	54 (72)
IPSSWM, n (%)		
Low	15 (20)	17 (23)
Intermediate	33 (44)	28 (37)
High	27 (36)	30 (40)
Baseline hemoglobin ≤11 g/dL, n (%)	44 (59)	50 (67)
Baseline serum IgM ≥50 g/L, n (%)	17 (23)	15 (20)
Disease-related symptoms, n (%)		
Fatigue	42 (56)	49 (65)
Constitutional symptoms*	19 (25)	29 (39)
Hyperviscosity	9 (12)	10 (13)
Extramedullary disease, n (%)	59 (79)	60 (80)
Adenopathy	56 (75)	58 (77)
Splenomegaly	9 (12)	18 (24)
Number of prior systemic therapies, n (%)		
0	34 (45)	34 (45)
1–2	34 (45)	36 (48)
≥3	7 (9)	5 (7)


^{*}Constitutional symptoms included night sweats, weight loss, and fever.

Higher Response Rates* Were Observed With Ibrutinib-RTX

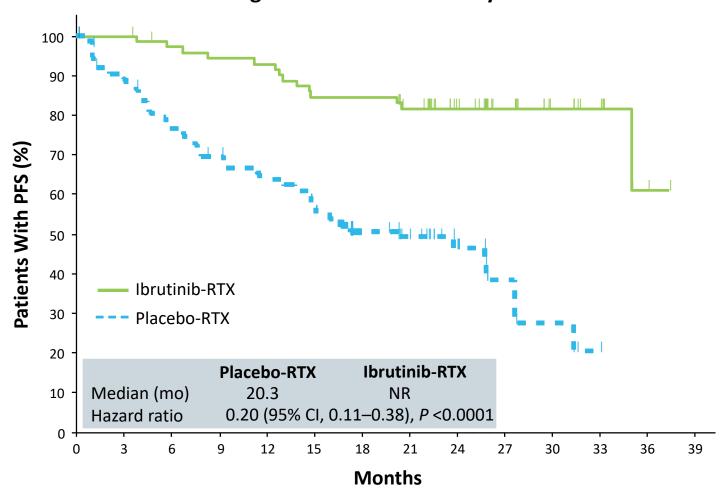
- Overall, ibrutinib-RTX vs placebo-RTX:
 - Major response (≥PR) rate: 72% vs 32%; P <0.0001
 - Overall (≥MR) response rate: 92% vs 47%; P <0.0001


Higher Response Rates* Were Observed With Ibrutinib-RTX

- Proportion of patients with genetic subtype[†], ibrutinib-RTX vs placebo-RTX:
 - MYD88^{L265P}/CXCR4^{WT}: 46% vs 52%
 - MYD88^{L265P}/CXCR4^{WHIM}: 38% vs 34%
 - MYD88WT/CXCR4WT: 16% vs 13%

^{*}Following modified 6th IWWM Response Criteria (NCCN 2014); required two consecutive assessments.

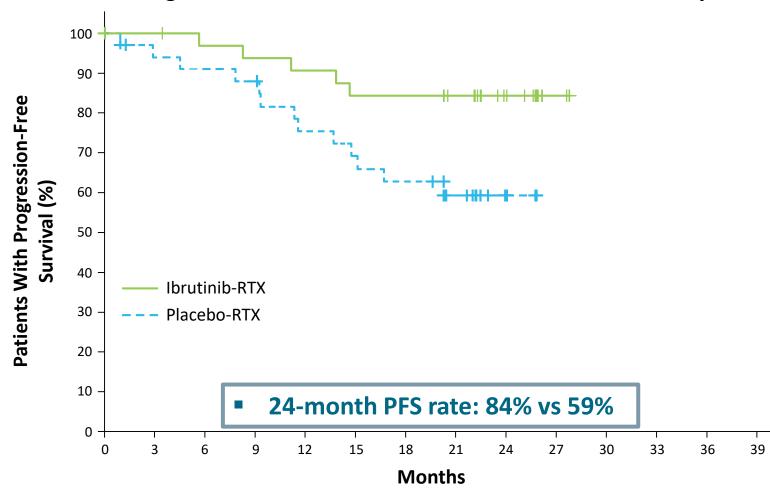
Higher Response Rates* Were Observed With Ibrutinib-RTX


- Proportion of patients with genetic subtype[†], ibrutinib-RTX vs placebo-RTX:
 - MYD88^{L265P}/CXCR4^{WT}: 46% vs 52%
 - MYD88^{L265P}/CXCR4^{WHIM}: 38% vs 34%
 - MYD88WT/CXCR4WT: 16% vs 13%

46

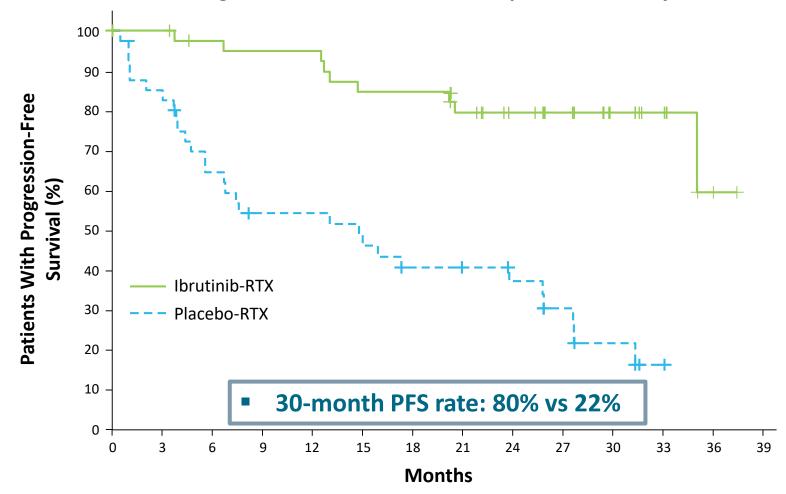
^{*}Following modified 6th IWWM Response Criteria (NCCN 2014); required two consecutive assessments.

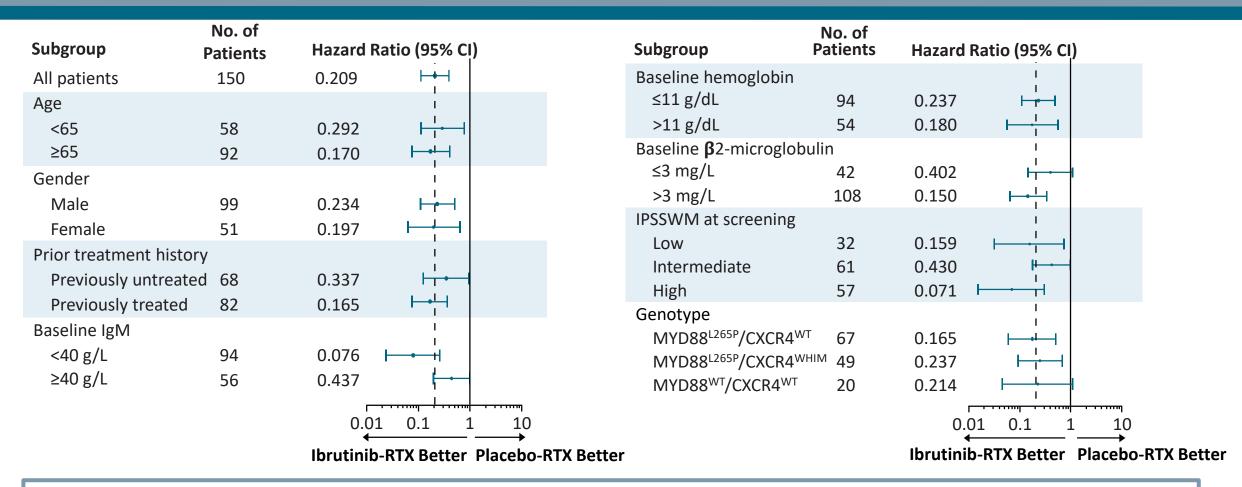
Progression-Free Survival Was Prolonged With Ibrutinib-RTX


Progression-Free Survival by IRC

- 30-month PFS rate at a median follow-up of 26.5 months: 82% vs 28%
- Consistent with IRC assessment, investigator-assessed PFS yielded a hazard ratio of 0.218 (P < 0.0001)

Progression-Free Survival: Treatment-Naïve Patients


Progression-Free Survival of Treatment-Naïve* Patients by IRC


^{*}This patient population was allowed to enroll following a protocol amendment (Nov 2015); therefore, their enrollment started later than relapsed patients.

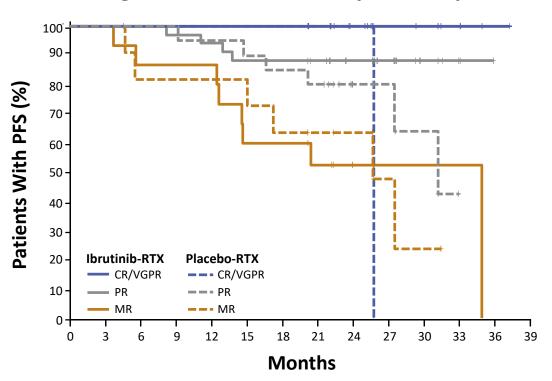
Progression-Free Survival: Relapsed Patients

Progression-Free Survival of Relapsed Patients by IRC

Improved Progression-Free Survival Was Observed Across Prespecified Subgroups

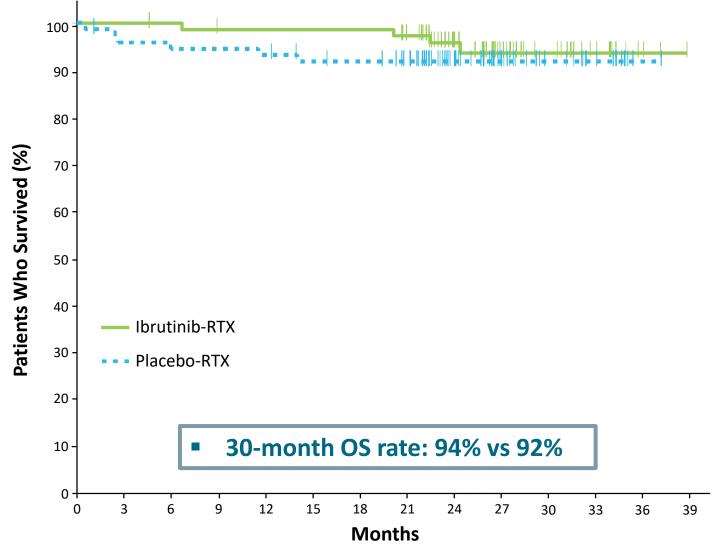
 Of note, improved PFS was seen in treatment-naïve patients, relapsed patients, and independent of MYD88/CXCR4 genotype

Progression-Free Survival by Genotype and Depth of Response



MYD88WT/CXCR4WT

--- MYD88^{L265P}/CXCR4^{WHIM}


Months

Progression-Free Survival by Best Response

- Improved PFS observed across different MYD88/CXCR4 genotypes with ibrutinib-RTX
- No notable difference in observed PFS between PR and VGPR/CR with ibrutinib-RTX

Overall Survival

- 30 patients in the placebo-RTX arm crossed over to single-agent ibrutinib
- At a median follow-up of 26.5 months,
 - 4 deaths on ibrutinib-RTX
 - 6 deaths on placebo-RTX

Treatment of WM

What comes next?

Improving Ibrutinib (Ibrutinib as a backbone)!

- → Rituximab/Ibrutinib Yes, iNNOVATE
- → Rituximab/Ibrutinib/Proteasome inhibitor?

Primary therapy of WM with carfilzomib, rituximab, dexamethasone (CaRD)

Induction Cycle 1 q21 Days

Days 1, 2, 8, 9: Carfilzomib 20 mg/m² IV; dex 20 mg IV

Days 2, 9: Rituximab 375 mg/m²

Induction Cycles 2-6 q21 Days

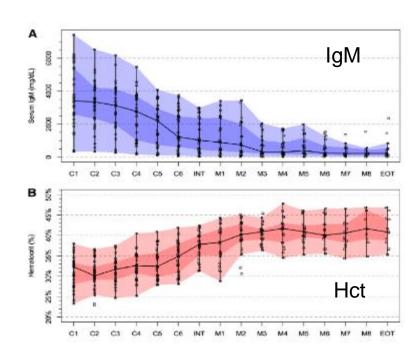
Days 1, 2, 8, 9: Carfilzomib 36 mg/m² IV; dex 20 mg IV

Days 2, 9: Rituximab 375 mg/m²

Maintenance Cycles 1-8 q2 Months

Days 1, 2: Carfilzomib 36 mg/m² IV; dex 20 mg IV

Day 2: Rituximab 375 mg/m²


Primary endpoints: ORR, TTP, neuropathy incidence

Carfilzomib, rituximab and dexamethasone (CaRD)

- N=31 patients (28 previously untreated; 3 rituximab, chemo & PI naïve)
- Reasons for treatment initiation:
 - anemia (n = 30)
 - extramedullary disease (n = 5)
 - hyperviscosity (n = 4)
 - IgM-related PN (n = 3)
- 29/30 patients had MYD88^{L265P}
- 11/30 patients had CXCR4WHIM

Response to CaRD

	N	(%)
ORR	27	87.1%
Major Response (<u>></u> PR)	21	67.7%
CR	1	3.2%
VGPR	10	32.2%
PR	10	32.2%
MR	6	19.3%
Non-Response	4	13%

- Median time to ≥MR: 2.1 months, median time to best response: 12.81 months
- CXCR4WHIM status: did not affect ORR, ≥PR rate
- N=9 patients underwent prophylactic pretherapy plasmapheresis, which included 4 patients for whom omission of rituximab occurred for ≥1 cycle.
- "IgM flare" associated with rituximab observed in 5 /22 (22.7%) patients

European Consortium for Waldenström's Macroglobulinemia ECWM - Trials 2018

ECWA

European Connect am for Med an artifact a Mecropholy all nem is

Trials First Line

ECWM-1 (Phase III)
DRC versus Bortezomib-DRC
European, over 60 centers
recruiting

ECWM-2 (Phase II)
B-Rituximab/Ibrutinib
European
30 centers

ECWM-3 (Phase III)
Carfilzomib/Ibrutinib vs Ibrutinib
European
60 centers

Relapse

ECWM-3 (Phase III)
Carfilzomib/Ibrutinib vs Ibrutinib
European
60 centers

ECWM-R2 Phase II;
Hovon, Greece
Ixazomib/Rituximab/Dex

<u>ECWM-R3</u> <u>Phase II; France</u> Idelalisib/GA101

ECWM-2 - Quartal III 2018 first line WM - single arm phase II

Key eligibility criteria

- Confirmed WM (N=53)
- Measurable disease (serum IgM > 0.5 g/dL)
- In need of treatment
- ECOG PS status of 0–2
- Genotyped for MYD88/CXCR4

Treatment

<u>Induction</u>

- Bortezomib SC 1.6/m² d1,8,15 cycle 1-6
- Rituximab 375 mg/m2 IV cycle 1, 1400 SC cycle 1-6
- Ibrutinib 420 mg PO continuously

Maintenance

- Rituximab 1400 SC every 2nd month x 12
- Ibrutinib 420 mg PO continously

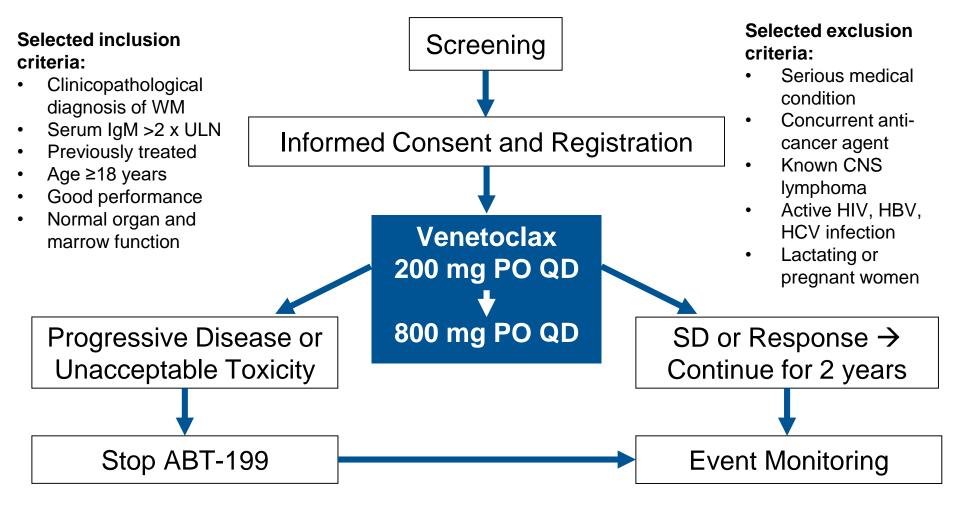
Treatment of WM

What comes next?

After Ibrutinib relapse!

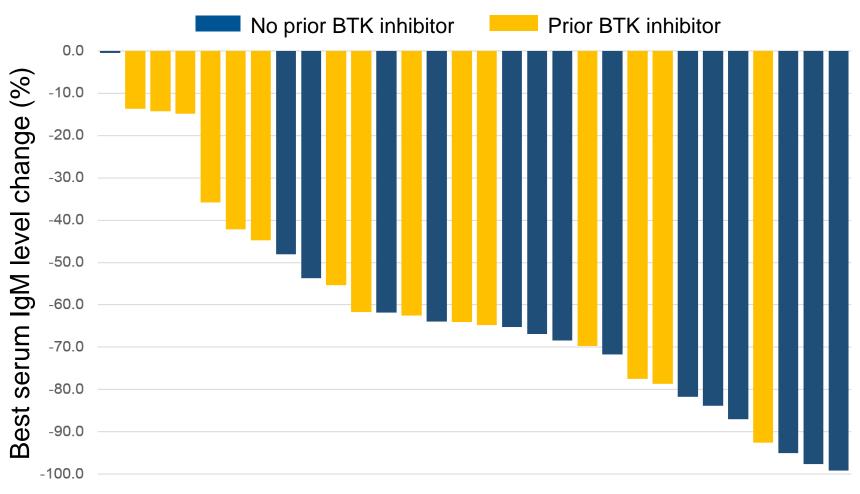
→ ABT-199

Phase II Study of Venetoclax in Previously Treated Waldenstrom Macroglobulinemia



Castillo JJ, Gustine J, Meid K, Dubeau T, Allan J, Furman R, Siddiqi T, Advani R, Lam J, Hunter Z, Yang G, Davids M, Treon SP

www.clinicaltrials.gov: NCT02677324



Characteristic	Number (%)
Age, years	66 (39-80)
Male sex	17 (57%)
Previous treatments	2 (1-10)
Prior BTK inhibitors	15 (50%)
MYD88 L265P	30 (100%)
CXCR4 mutations	16 (53%)
Serum IgM level (mg/dl)	3,543 (642-7,970)
Hemoglobin level (g/dl)	10.6 (6.4-13.5)
Platelet count (K/ul)	222 (7-445)
Lymphadenopathy	9 (30%)
Splenomegaly	6 (20%)

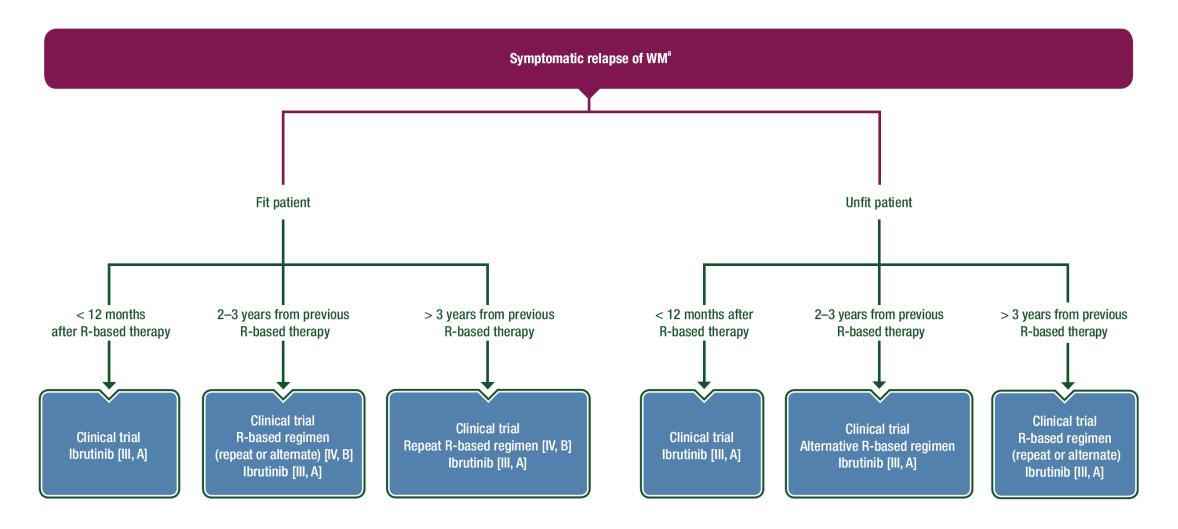
Response	Number (%)	
Overall (≥Minor)	26 (87%)	
Major (≥Partial)	22 (74%)	
Very good	5 (17%)	
Partial	17 (57%)	
Minor	4 (13%)	
Stable	4 (13%)	

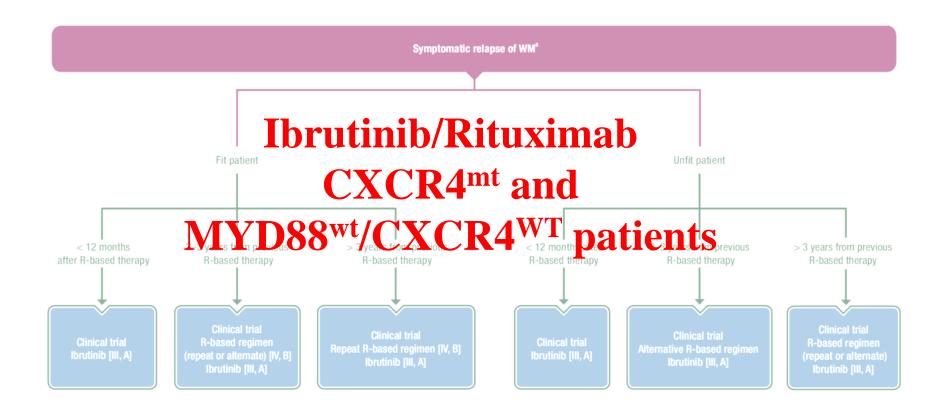
Response	No prior ibrutinib (n=15)	Prior ibrutinib (n=15)	CXCR4 MUT (n=16)	CXCR4 WT (n=14)
Overall	14 (93%)	12 (80%)	14 (87%)	12 (86%)
Major	13 (87%)	9 (60%)	13 (63%)	9 (86%)
Very good	4 (27%)	1 (7%)	1 (7%)	4 (29%)
Partial	9 (60%)	8 (53%)	9 (56%)	8 (57%)
Minor	1 (7%)	3 (20%)	4 (25%)	0 (0%)
Stable	1 (7%)	3 (20%)	2 (13%)	2 (14%)

1 patient had progressive disease at 9 months (MYD88, CXCR4, TP53)


Adverse Event, N (%)	Grade 1	Grade 2	Grade 3	Grade 4	All Grades
Neutropenia	2 (7)	4 (14)	6 (21)	3 (10)	15 (52)
Anemia	1 (3)	5 (17)	2 (7)	0	8 (28)
URI	2 (7)	0	1 (3)	0	3 (10)
Nausea	9 (31)	4 (14)	0	0	13 (48)
Headache	2 (7)	3 (10)	0	0	5 (17)
diarrhea	4 (14)	1 (3)	0	0	5 (17)
Chills	2 (7)	1 (3)	0	0	3 (10)
Constipation	2 (7)	1 (3)	0	0	3 (10)
Mucositis oral	2 (7)	1 (3)	0	0	3 (10)
Muscle Cramps	1 (3)	1 (3)	0	0	2 (7)

Laboratory TLS (n=1). No IgM flare. No deaths.




Therapeutic Algorithm – ESMO Guidelines 2018

Therapeutic Algorithm – ESMO Guidelines 2018

Therapeutic Algorithm – ESMO Guidelines 2018

Kastritis E,, Buske C on behalf of the ESMO Guidelines Committee

European Consortium for Waldenström's Macroglobulinemia

CLINICAL INTERGROUP

PATHOLOGY PANEL

RESEARCH

CLINICAL TRIALS

MEMBERS

DATES

07.12.2013 - 10.12.2013

ASH 2013

New Orleans

12.06.2014 - 15.06.2013

EHA 2014

Milano

CLINICAL INTERGROUP

Clinical Intergroup

The ECWM is based on a clinical intergroup connecting all major clinical national study groups such as:

- BNLI
- Czech Myeloma Group
- FIL Italian Intergroup
- FCGCLLWM Group
- GLSG/OSHO
- Greek Myeloma Study Group
- HOVON
- Nordic Lymphoma Group
- Portuguese Lymphoma Study Group

Treatment of WM

Rituximab/Chemotherapy still a good therapy for many patients

European Consortium for Waldenström's Macroglobulinemia ECWM - Trials 2017

Trials First Line

ECWM-1 (Phase III)
DRC versus Bortezomib-DRC
European, over 60 centers
recruiting

R2W (ECWM-2)(Phase II)
BCR versus FCR
UK, 27 centers
Finished recruitment

ECWM-3 (Phase II)
B-Rituximab/Ibrutinib
Germany, France, Greece
60 centers

Relapse

ECWM-R1 (Phase III, iNNOVATE):

Rituximab + Placebo vs Rituximab plus Ibrutinib

Global, 59 centers

Activation in Europe Dec 2014

<u>ECWM-R2 Phase II;</u> <u>Hovon, Greece</u> Ixazomib/Rituximab/Dexa <u>ECWM-R3</u> <u>Phase II; France</u> Idelalisib/GA101 ECWM-R4
Phase II GA101/CD38 mAb

European Consortium for Waldenström's Macroglobulinemia ECWM - Trials 2017

ECWA Lurgery Consertain for Weldenstromy Macrophy air err a

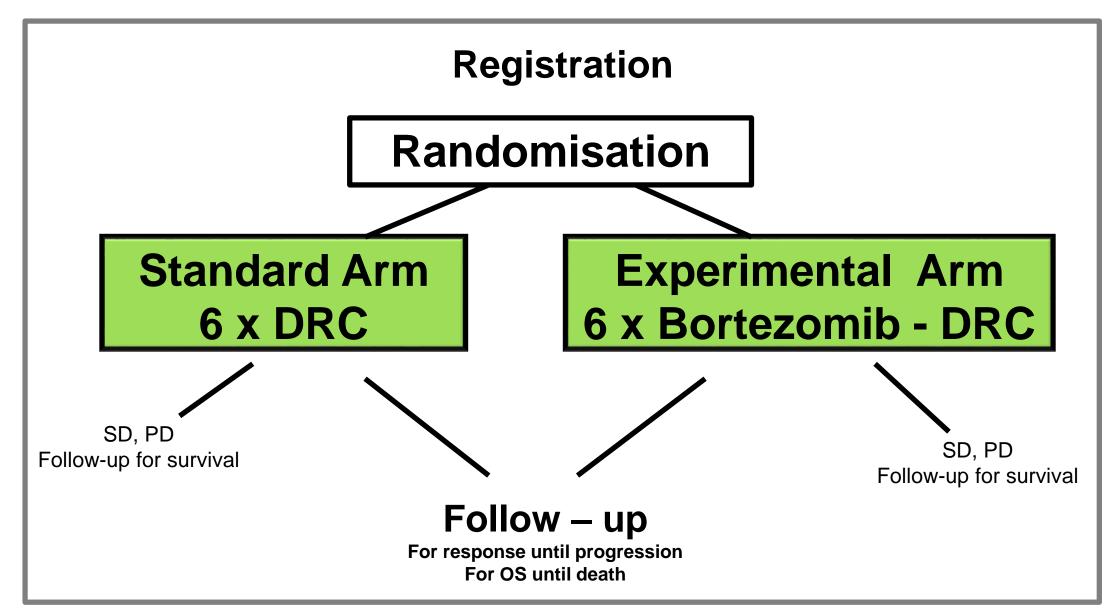
Trials First Line

ECWM-1 (Phase III)
DRC versus Bortezomib-DRC
European, over 60 centers
recruiting

R2W (ECWM-2)(Phase II)
BCR versus FCR

UK, 27 centers
Finished recruitment

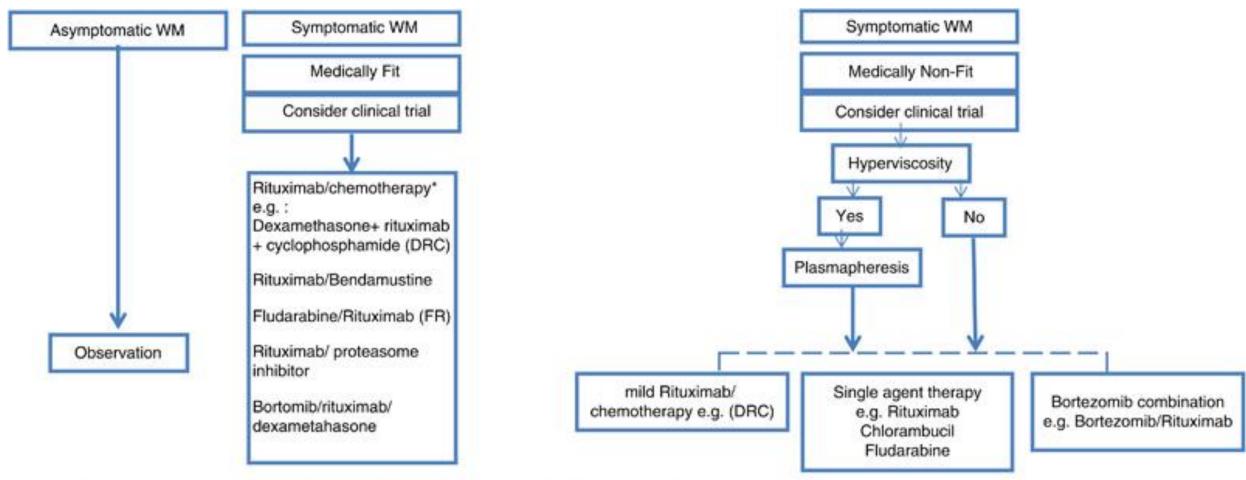
ECWM-3 (Phase II)
B-Rituximab/Ibrutinib
Germany, France, Greece
60 centers


Relapse

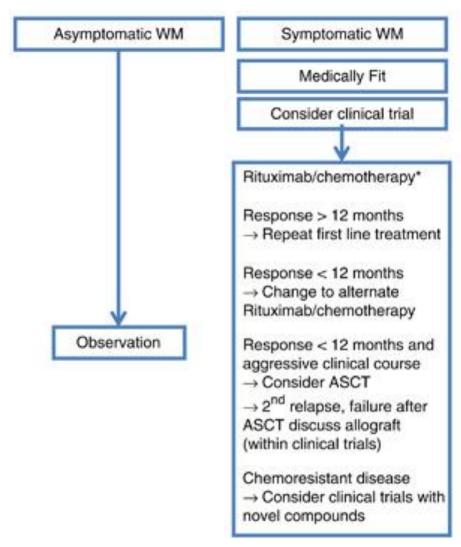
ECWM-R1 (Phase III, iNNOVATE):

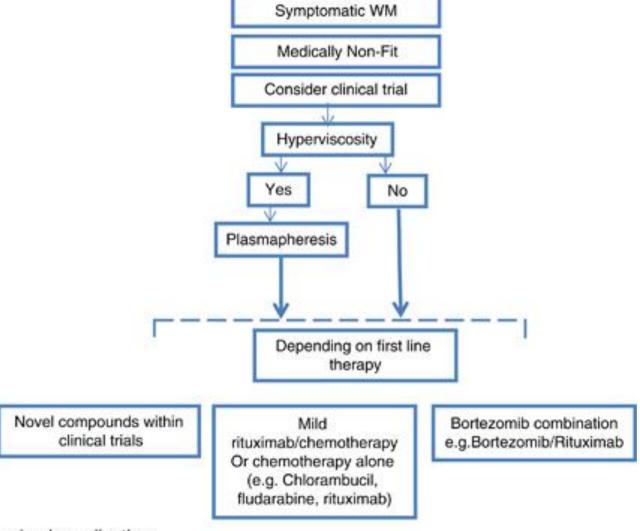
Rituximab + Placebo vs Rituximab plus Ibrutinib Global, 59 centers Activation in Europe Dec 2014

<u>ECWM-R2 Phase II;</u> <u>Hovon, Greece</u> Ixazomib/Rituximab/Dexa <u>ECWM-R3</u> <u>Phase II; France</u> Idelalisib/GA101 ECWM-R4
Phase II GA101/CD38 mAb

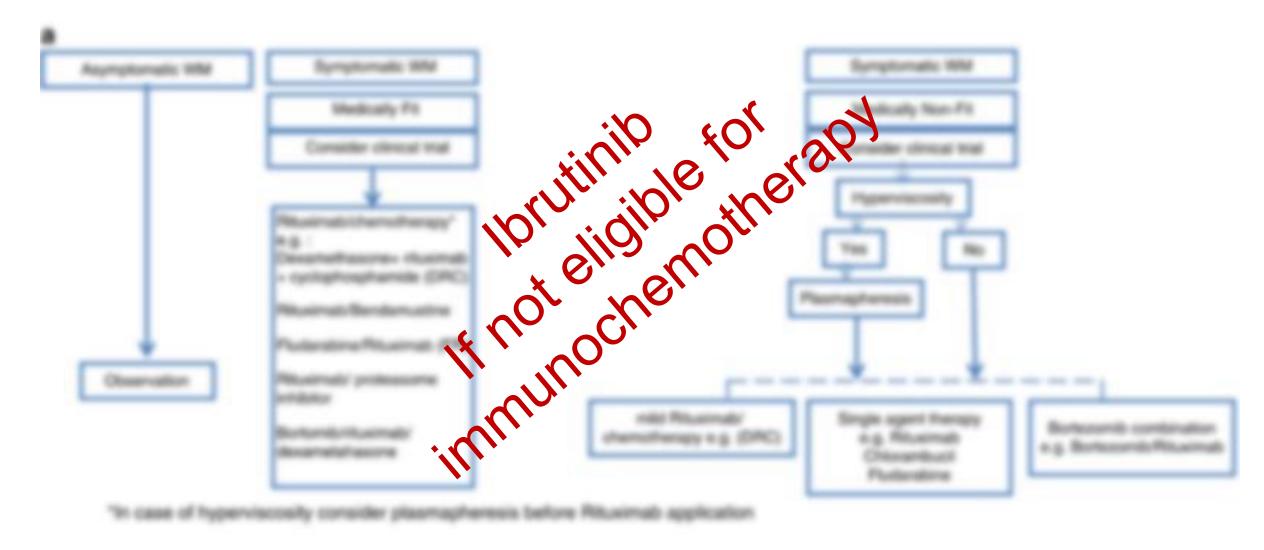

ECWM-1 first line WM

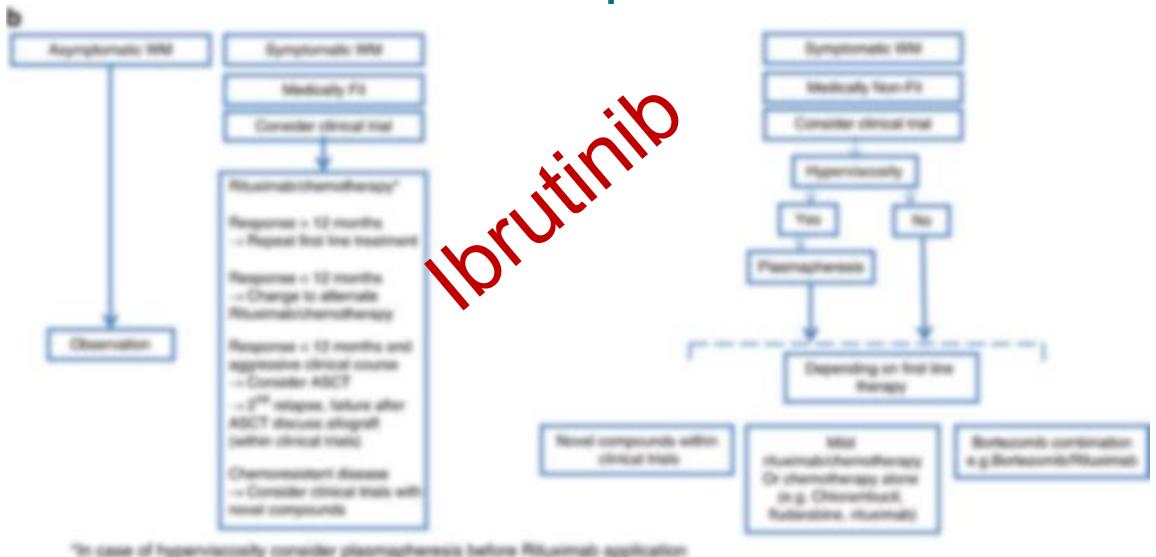
Study ECWM-1 - Status


- Study activated in: Germany, France, Greece, Portugal, Spain, Sweden,
 Czech Republic
- Patients randomized: 191 (April 2017)


Treatment Algorithms – WM First line

^{*}In case of hyperviscosity consider plasmapheresis before Rituximab application


Treatment Algorithms – WM Relapse



^{*}In case of hyperviscosity consider plasmapheresis before Rituximab application

Treatment Algorithms – WM First line

Treatment Algorithms – WM Relapse

Modified Response and Progression Criteria for Investigator Assessment

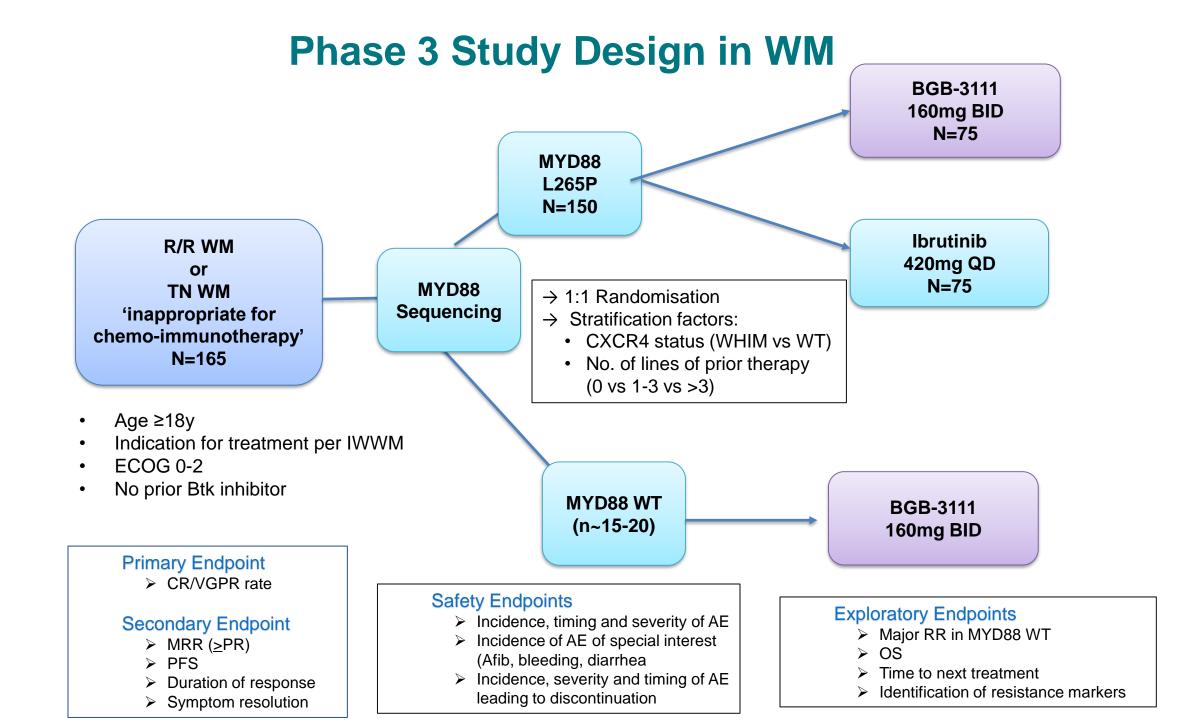
Category	Response Criteria*
Complete response (CR)	 Serum IgM values in the normal range Disappearance of monoclonal protein by immunofixation (Note: Reconfirmation of CR status is required with a second immunofixation at any time point) No histological evidence of bone marrow involvement Complete resolution of lymphadenopathy†/splenomegaly‡ if present at baseline
Very good partial response (VGPR)	 At least 90% reduction of serum IgM from baseline or serum IgM values in normal range Reduction in lymphadenopathy[†]/splenomegaly[‡] if present at baseline
Partial response (PR)	 At least 50% reduction of serum IgM from baseline Reduction in lymphadenopathy[†]/splenomegaly[‡] if present at baseline
Minor response (MR)	At least 25% but less than 50% reduction of serum IgM from baseline
Stable disease (SD)	Not meeting criteria for CR, VGPR, PR, MR, or progressive disease
Progressive disease (PD)	 At least one of the following: A ≥25% increase in serum IgM with a total increase of at least 500 mg/dL from nadir[§] Confirmation of the initial IgM increase is required when IgM is sole criterion for PD Appearance of new lymph nodes >1.5 cm in any axis, ≥50% increase from nadir in sum of product of diameters of one or more node, or ≥50% increase in longest diameter of a previously identified node >1 cm in short axis Appearance of new splenomegaly or ≥50% increase from nadir in enlargement of the spleen Appearance of new extranodal disease New or recurrent involvement in bone marrow New symptomatic disease (based on presence of malignant pleural effusion, Bing Neel syndrome, amyloidosis or light chain deposition disease, or other paraprotein-mediated disorder

^{*}Primary activity evaluations are based on independent review committee evaluations. [†]A target lesion is defined as a lymph node with a long axis >1.5 cm or a short axis >1.0 cm. [‡]Splenomegaly is defined as the longest cranial-caudal measurement of the spleen >13 cm. [§] Nadir for serum IgM is defined as the lowest serum IgM value obtained at any time from baseline with the exception that serum IgM levels post-g will not be considered for up to 35 days.

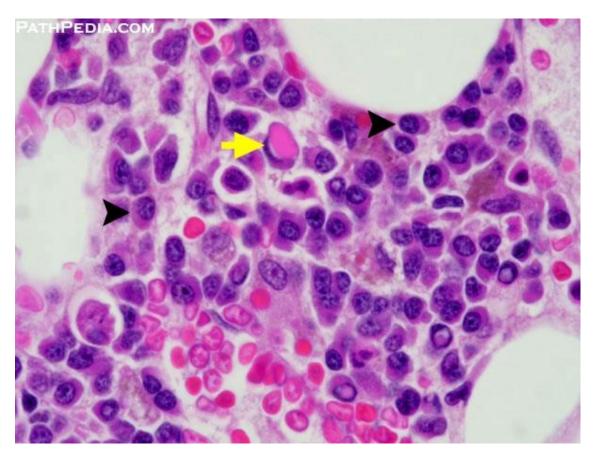
ASCO 2018, iNNOVATE WM; Dimopoulos et al.

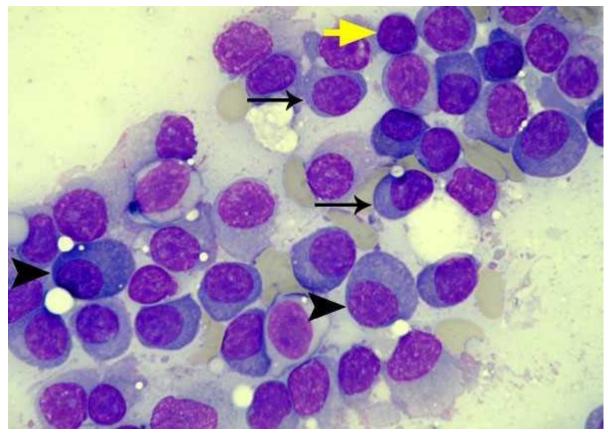
The BTK Inhibitor, BGB-3111, is Tolerable and Highly Active in Patients with Waldenström Macroglobulinemia: Interim Data From an Ongoing Phase 1 First-in-Human Trial

Constantine S Tam^{1,2}, Judith Trotman^{3,4}, Stephen Opat^{5,6}, Paula Marlton⁷, Gavin Cull⁸, David Simpson⁹, David Gottlieb^{4,10}, Matthew Ku¹¹, David Ritchie^{1,2,12}, Emma Verner³, Sumita Ratnasingam⁵, Mary Ann Anderson^{2,12}, Peter Wood⁷, Mark Kirschbaum¹³, Lai Wang¹³, Ling Xue¹³, Eric Hedrick¹³, John F Seymour^{1,2}, Andrew W Roberts^{2,12}

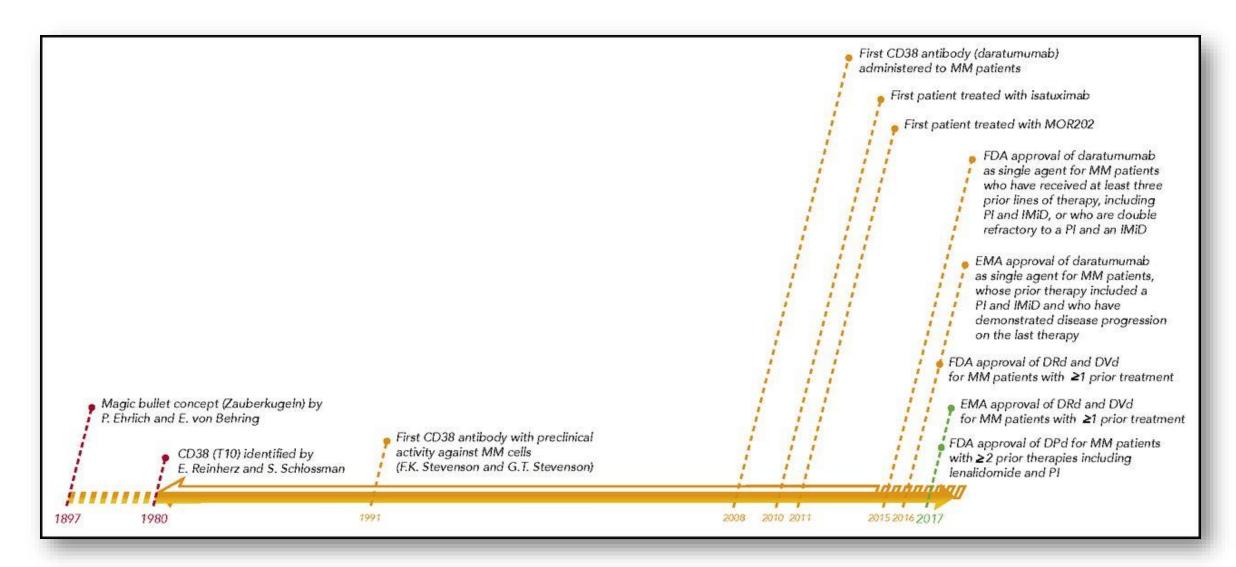

¹Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia, ²University of Melbourne, Parkville, Victoria, Australia, ³Concord Repatriation General Hospital, Concord, Australia, ⁴University of Sydney, Australia, ⁵Monash Health, Clayton, Victoria, Australia, ⁶Monash University, Clayton, Victoria, Australia, ⁷Princess Alexandra Hospital and University of Queensland, Brisbane, Australia, ⁸Sir Charles Gairdner Hospital, Perth, Western Australia, Australia, ⁹North Shore Hospital, Auckland, New Zealand, ¹⁰Westmead Hospital, Westmead, Australia, ¹¹Austin Health, Heidelberg, Victoria, Australia, ¹²Melbourne Health, Parkville, Victoria, Australia, ¹³BeiGene, Beijing, China

Efficacy Summary (n=32)

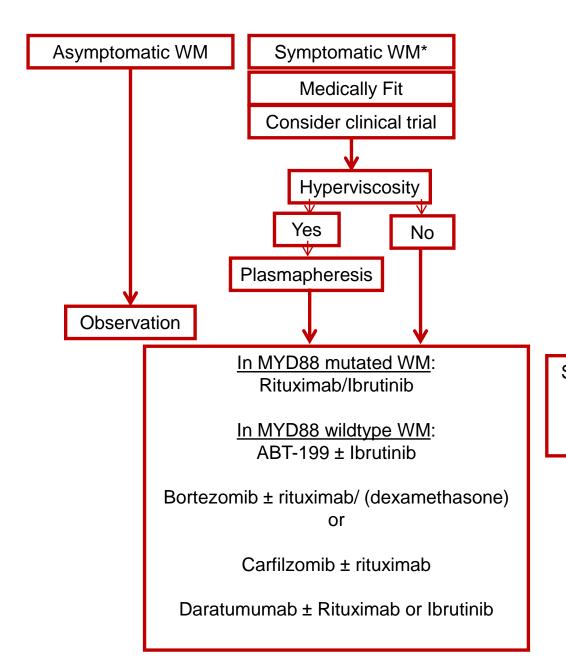

	Total
Median follow-up (range)	9.6 months (3.0- 24.7 months)
Best Response (n=32) CR VGPR PR MR SD	0 11 (34%) 14 (44%) 5 (16%) 2 (6%) 94%**
IgM reduction (median, %)	32.5 g/L to 4.0 g/L (88%)
Hemoglobin Change (median)	10.3 g/dl to 13.6 g/dl
Lymphadenopathy Reduction by CT (#pts, range)	12/12 (9-100%)

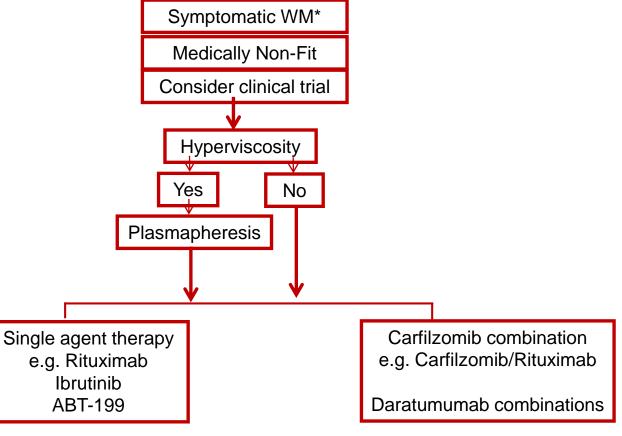

^{*} Major response rate

^{**} Overall response rate


Why this – WM consists of two cellular populations!

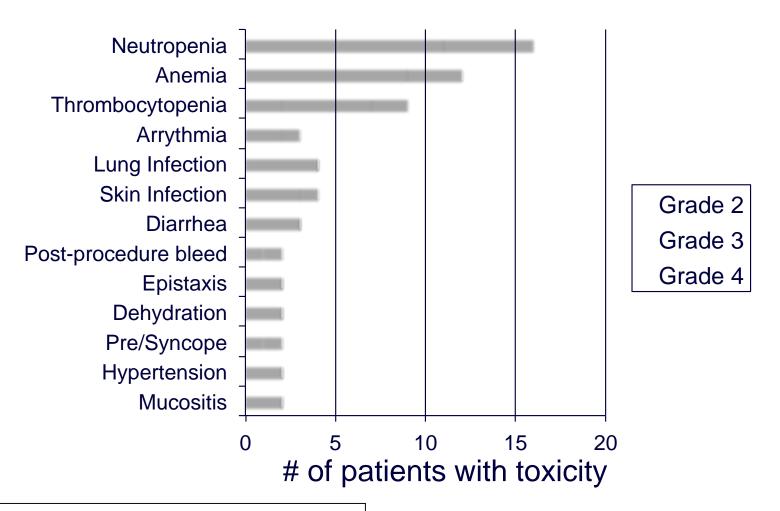
CD20⁺ lymphoid population and CD20⁻ CD38⁺ plasmacytic population!

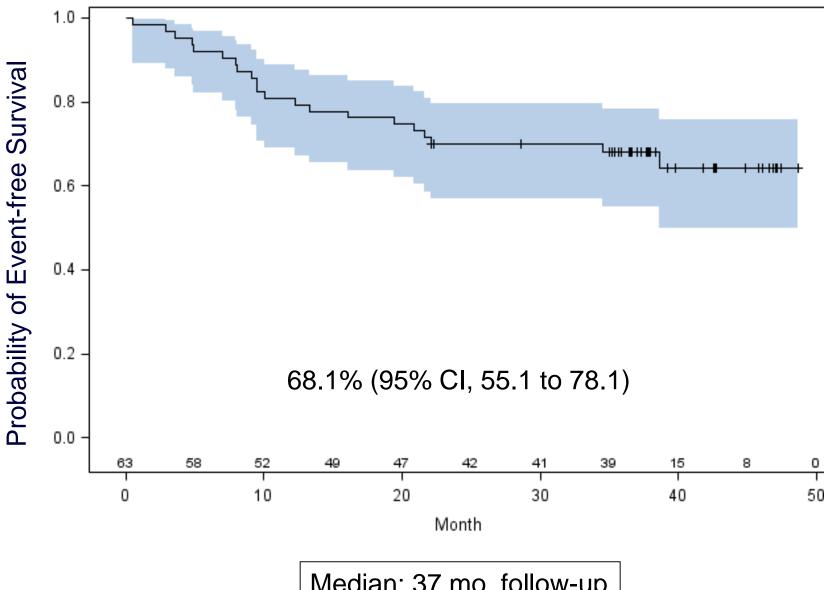

History of CD38 antibodies



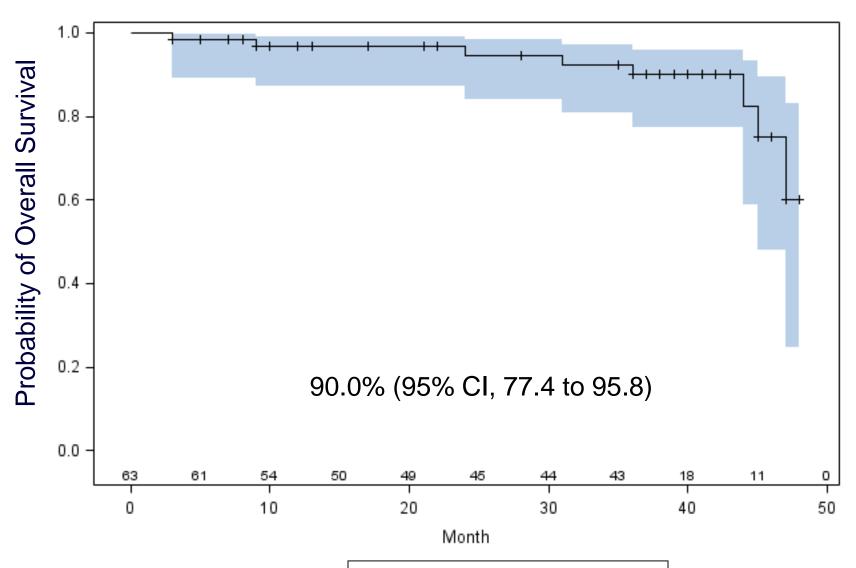
Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen speciesdependent pathway

Manoj K. Kashyap¹, Deepak Kumar¹, Harrison Jones¹, Carlos I. Amaya-Chanaga¹, Michael Y. Choi¹, Johanna Melo-Cardenas¹, Amine Ale-Ali¹, Michelle R. Kuhne³, Peter Sabbatini⁴, Lewis J. Cohen⁴, Suresh G. Shelat⁴, Laura Z. Rassenti², Thomas J. Kipps^{1,2}, Pina M. Cardarelli³ and Januario E. Castro^{1,2}


WM treatment in 5 years?


Ibrutinib-related adverse events in previously treated WM patients

Toxicities >1 patient; N=63


No impact on IGA and IGG immunoglobulins

Ibrutinib in Previously Treated WM: Event-free Survival

Median: 37 mo. follow-up

Ibrutinib in Previously Treated WM: Overall Survival

Median: 37 mo. follow-up

Treon et al, NEJM 2015; 372(15):1430-40

Hematologic toxicity

	Grades 1-2	Grade 3	Grade 4	Total Gr 3/4
Neutropenia	3 (10)	3 (10)	1 (3)	13%
Anemia	3 (10)	2 (6)	0	6%
Thrombocytopenia	4 (13)	1 (3)	1 (3)	6%

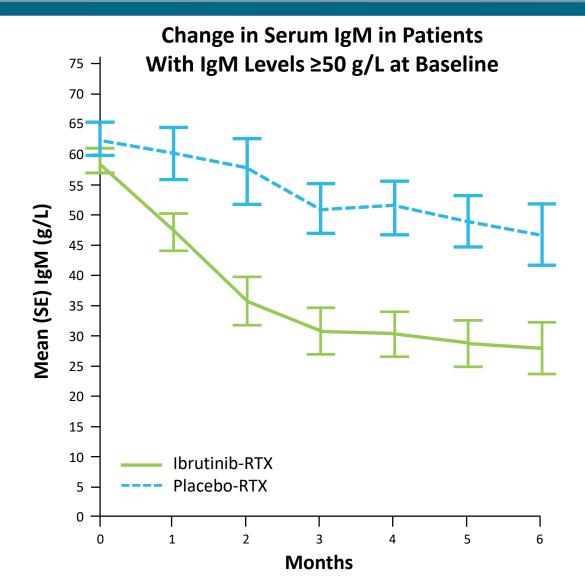
Non-hematologic toxicity (>10%)

	Grade 1-2	Grade 3	Grade 4
Diarrhea	11 (36)	2 (6)	0
Hypertension	4 (13)	3 (10)	0
Increased tendency to bruise	7 (23)	0	0
Back pain	7 (23)	0	0
Constipation	5 (16)	1 (3)	0
Arthralgia	4 (13)	1 (3)	0
Upper respiratory tract infection	6 (19)	0	0
Pyrexia	6 (19)	0	0
Nausea	6 (19)	0	0
Respiratory tract infection	3 (10)	1 (3)	0
Fatigue	3 (10)	1 (3)	0
Tinnitus	4 (13)	0	0
Peripheral edema	4 (13)	0	0
Cough	4 (13)	0	0
Conjunctivitis	4 (13)	0	0

Dimopoulos et al, Lancet Oncol. 2017; 18(2): 241-250

Infectious complications

	Grade 1-2	Grade 3	Grade 4
Upper respiratory tract infection	6 (19)	0	0
Pyrexia	6 (19)	0	0
Respiratory tract infection	3 (10)	1 (3)	0
Pneumonia	1 (3)	1 (3)	0
Paronychia	1 (3)	1 (3)	0
Cellulitis	1 (3)	1 (3)	0
Aspergillus infection	0	1 (3)	0


Grade 3-4 infections: 15%

Patient Disposition

	Ibrutinib-RTX (n = 75)	Placebo-RTX (n = 75)
Received study treatment, n (%)	75 (100)	75 (100)
Discontinued ibrutinib/placebo, n (%)		
Progressive disease	7 (9)	33 (44)
AE	4 (5)	3 (4)
Withdrawal by patient	6 (8)	7 (9)
Investigator decision	2 (3)	6 (8)
Discontinued RTX early, n (%)		
Progressive disease	0	6 (8)
AE	2 (3)	9 (12)
Withdrawal by patient	3 (4)	4 (5)
Investigator decision	0	3 (4)

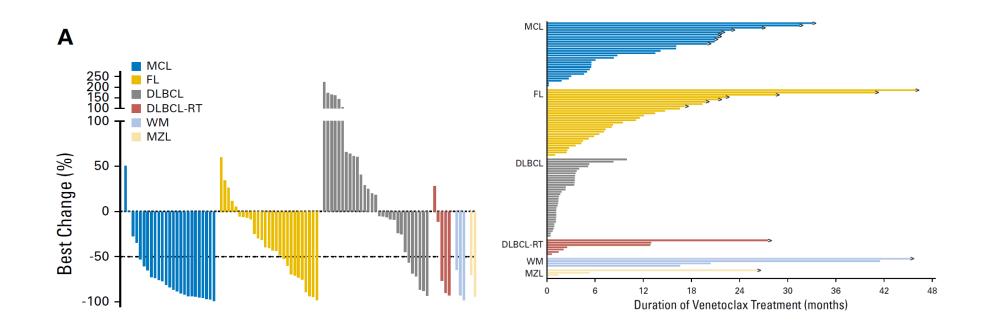
93% of patients on ibrutinib-RTX completed RTX treatment vs 71% on placebo-RTX

More Rapid Decline in IgM With Ibrutinib-RTX

- Rapid decline in median IgM in patients with IgM ≥50 g/L at baseline
 - At week 9, mean IgM reduced 39% from baseline with ibrutinib-RTX
- No plasmapheresis with ibrutinib-RTX vs 12 patients with placebo-RTX during the course of treatment

Safety Profile of Ibrutinib-RTX Was Similar to the Known Profiles of Each Agent

	Ibrutinib-RTX (n = 75)		Placebo-RTX (n = 75)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
AEs*, n (%)	75 (100)	45 (60)	75 (100)	46 (61)
Infusion-related reactions	32 (43)	1 (1)	44 (59)	12 (16)
Diarrhea	21 (28)	0	11 (15)	1 (1)
Anemia	14 (19)	8 (11)	22 (29)	13 (17)
Hypertension	14 (19)	10 (13)	4 (5)	3 (4)
Asthenia	12 (16)	0	19 (25)	2 (3)
Atrial fibrillation	11 (15)	9 (12)	2 (3)	1 (1)
Fatigue	10 (13)	2 (3)	20 (27)	1 (1)
Tumor flare	6 (8)	0	35 (47)	2 (3)


- Median time on treatment
 - Ibrutinib-RTX: 25.8 months (range, 1.0–37.2)
 - Placebo-RTX: 15.5 months (range, 0.4–34.3)
- Ibrutinib-RTX: 55% of atrial fibrillation occurred in patients
 ≥75 years of age

No Unexpected Toxicities Were Reported

Serious AE, n (%)	Ibrutinib-RTX (n = 75)	Placebo-RTX (n = 75)
Any serious AE*	32 (43)	25 (33)
Pneumonia	6 (8)	2 (3)
Atrial fibrillation	5 (7)	1 (1)
Respiratory tract infection	3 (4)	0
Anemia	2 (3)	0
Arthralgia	2 (3)	0
Congestive cardiac failure	2 (3)	0
Fall	2 (3)	0
Gastroenteritis	2 (3)	0
Myocardial ischemia	2 (3)	0

- Major hemorrhage: 4% in each arm
 - Anticoagulant/antiplatelet medication use
 - Ibrutinib-RTX: 43%
 - Placebo-RTX: 36%
- 3 Grade 5 AEs occurred on placebo-RTX (intracranial hemorrhage, nervous system disorder, and not specified)

Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma

Davids J Clin Oncol 2016

